education

Department:
Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS: 200

This memorandum consists of 13 pages and 1 formula sheet.

QUESTION 1: TECHNOLOGY, SOCIETY AND THE ENVIRONMENT

1.1 Air pollution caused by generation of electricity, coal emissions, etc. $\checkmark \checkmark$ Water, waste due to generation of electricity and disposable of energy devices $\checkmark \checkmark$
1.2 Marketing \checkmark

Communication \checkmark
Presentation
Financial literacy
Costing of materials etc. (Any three)
1.3 Inclusitivity \checkmark

Physical access Human rights \checkmark
Social justice (Any three)
There was no problem with answers to this question, except that markers should be flexible, because answers could be endless. Therefore, any relevent answers are accepted.

QUESTION 2: TECHNOLOGICAL PROCESS

2.1.1 Poor sound quality of the radio $\checkmark \checkmark$
2.1.2

After discussions we decided that even if the learner mentioned Input; Process and Output without a flow diagram, he/she will get full six marks. Also written relevant answer without flow chart should give learners at least half of six marks, (3 marks).
2.1.3 The circuit connections and assembling should be correct \checkmark

The amplifier should provide an audible sound to meet the needs of the elderly people. \checkmark
Correct operation
The device circuit should be packaged in a portable way.
(Any relevant answer is correct.)

QUESTION 3: OCCUPATIONAL HEALTH AND SAFETY

3.1 Make sure a soldering stand is used to support the iron when not in use to prevent burn damage and possible fire. $\checkmark \checkmark$ (more options)
3.2 Make sure no physical contact is made with the chemicals. It will damage clothes and may also cause skin damage. $\checkmark \checkmark$ (any valid answer)
3.3 Inspect the supply cord to make sure that there are no exposed conductors which could lead to a short circuit and possible shock.
Inspect the casing of the drilling machine to ensure it is earthed to give electrical and mechanical protection $\checkmark \checkmark$ (any valid answer)
3.4 Working on a live system with exposed conductors.

Working with portable electric equipment that is not insulated correctly. (more options) (any valid answer)
3.5 Make surethat the meter is connected in parallel in the circuit. Make sure the lead connections are connected into the correct socket of the meter \checkmark (any valid answer)

The whole of these answers are fine, except that markers should accept any applicable, specific answers.

QUESTION 4: THREE-PHASE AC GENERATION

4.1 A three-phase system is more versatile than a single-phase system as it can be connected in star or delta. \checkmark (many others)
4.2 A single-phase motor has a lagging power factor \checkmark as it consists of coils which are inductive. Current through an inductor connected to an AC supply lays the applied voltage $\checkmark \checkmark$
$4.3 \quad V_{P h}=380 \mathrm{~V}$

$$
\therefore V_{L}=380 \mathrm{~V}
$$

$$
I_{P h}=12 \mathrm{~A}
$$

$$
I_{L}=\sqrt{3} I_{P h}
$$

$$
=\sqrt{3} \times 12
$$

$$
=20,78 \mathrm{~A}
$$

We suggested that there should be another mark for the line current above. Teachers should mark positively by carrying an error, not penalize the learner due to one error.

$$
\text { 4.3.1 } \quad \begin{align*}
P_{L} & =\sqrt{3} V_{L} I_{L} \cos \theta \\
& =\sqrt{3} \times 380 \times 20,78 \times \cos 25 \\
& =12,395 \mathrm{~kW} \tag{3}
\end{align*}
$$

4.3.2

$$
\begin{align*}
S & =\frac{P}{\cos \theta} \\
& =\frac{12,395}{\cos 25^{\circ}} \\
& =13,67 \mathrm{kVA} \tag{3}
\end{align*}
$$

QUESTION 5: R, L AND C CIRCUITS

5.1.1 Z \checkmark
5.1.2 $\quad X_{C} \checkmark$
5.1.3 L \checkmark
5.2.1 $\quad V_{T}=\sqrt{V_{R}{ }^{2}+V_{L}{ }^{2}} \quad \checkmark$

$$
\begin{aligned}
& =\sqrt{30^{2}+40^{2}} \\
& =50 \mathrm{~V}
\end{aligned}
$$

5.2.2

$$
\begin{align*}
\theta & =\cos ^{-1} \frac{V_{R}}{V_{T}} \checkmark \\
& =\cos ^{-1} \frac{30}{50} \tag{3}\\
& =53,13^{\circ}
\end{align*}
$$

The alternative method which is longer should be accepted and carry same marks.
5.2.3

$$
\begin{align*}
Z & =\frac{V_{T}}{I_{T}} \\
& =\frac{50}{3} \\
& =16,67 \Omega \tag{3}
\end{align*}
$$

5.2.4

The other tick for the Direction of rotation should be correctly aligned.
5.3.1 $\quad X_{L}=2 \pi f L$

$$
\begin{aligned}
& =2 \pi \times 50 \times 0.1 \quad \checkmark \\
& =31,416 \Omega
\end{aligned}
$$

$$
\begin{align*}
I_{L} & =\frac{V}{X_{L}} \\
& =\frac{100}{31,416} \tag{6}\\
& =3,18 \mathrm{~A}
\end{align*}
$$

Alternative
5.3.2 $\quad I_{R}=\frac{V}{R}$

$$
\begin{align*}
& =\frac{100}{20} \\
& =5 \mathrm{~A} \tag{3}
\end{align*}
$$

5.3 .3

$$
\begin{aligned}
I_{T} & =\sqrt{I_{R}{ }^{2}+\left(I_{C}-I_{L}\right)^{2}} \\
& =\sqrt{5^{2}+(4.71-3.18)^{2}} \\
& =5,23 \mathrm{~A}
\end{aligned}
$$

QUESTION 6: SWITCHING AND CONTROL CIRCUITS

6.1 If a rising voltage is applied to a DIAC it acts like an open switch. \checkmark When the DIAC's trigger voltage is reached, the internal resistance of the DIAC breaks down \checkmark allowing the DIAC to conduct. \checkmark It operates in both directions. When the current falls below the holding current, it switches off. \checkmark A DIAC switches on at the same time in both directions.
6.2

We had discusions, and we decided that half marks are not appropriate. We decided that there should be full ticks as follows: 2 marks for shapes; mark for Positive/Negative axis; mark for forward conduction and another mark for reverse conduction, making full 5 marks.
$6.3 \quad 6.3 .1$

6.3.2

(3)
6.4 Switched on. A positive potential must be applied to the anode terminal. The SCR will now be in a state ready to conduct. \checkmark When the correct positive potential is applied to the gate the SCR will begin to conduct.

Switched off. The current flowing through the SCR must be reduced below the holding value. \checkmark Remove or reverse the potential across the SCR.
6.5 When the triggering circuit has no capacitor in it, the triggering signal will not be delayed by a time constant. \checkmark When the voltage level at the gate reaches the triggering level, the SCR will be fired. \checkmark Because the sinusoidal supply reaches its maximum at 90°, any value after 90° that could trigger the SCR has already occured before $90^{\circ}, \checkmark \checkmark$
6.6 The advantage of the TRIAC and SCR in power control is that they have low power loss for the amount of power that is controlled. \checkmark Current control is also smooth, fast and accurate.
6.7 The TRIAC has full-wave control in AC applications, the SCR has only halfwave control.

QUESTION 7: AMPLIFIERS

7.1 Positive feedback means that the output \checkmark signal is added to the input signal. \checkmark The magnitude of the signal of that particular frequency is increased, and all other frequency signals will diminish. \checkmark If learners wrote the first sentence he/she will get full two marks. The markers will be flexible for the other mark.
7.2

The electrical signal that the oscillator produces is called the natural oscillation frequency. \checkmark Natural oscillation diminishes in amplitude and disappears due to a lack of positive feedback \checkmark We decided that three marks should be for the diagram and three marks for the explanations.

7.3

7.3.1 The following are the changes in the response curve with negative feedback as compared to no negative feedback.
The gain is smaller \checkmark
The characteristic curve is flatter
Bandwidth increased \checkmark
Cut-off frequencies are further apart \checkmark
7.3.2 Yes, \checkmark the ideal is to have an amplifier with a flat response curve \checkmark. \checkmark
On 7.4 it was thought the summing amplifier was not part of the LPG/NCS. We decide that we will wait for the Standardisation meeting to take a final decision, to see if learners were able to answer it or not.

7.4

7.4.1

$$
\begin{array}{ll}
\text { 7.4.2 } & V_{T}=-\left(V_{1}+V_{2}+V_{3}\right) \\
& =-(0,5+1+1,5) \\
& =-3 \tag{3}
\end{array}
$$

7.4.3

QUESTION 8: THREE-PHASE TRANSFORMERS

8.1 Iron losses \checkmark

Copper losses \checkmark
(2)
8.2

(4)
8.3.1

$$
\begin{align*}
S & =\frac{P}{P F} \\
& =\frac{10000}{0,8} \\
& =12,5 \mathrm{kVA} \tag{3}
\end{align*}
$$

8.3.2

$$
\begin{align*}
I_{L(S)} & =\frac{P}{\sqrt{3} V_{L S} \cos \theta} \\
& =\frac{10000}{\sqrt{3} \times 400 \times 0,8} \quad \checkmark \\
& =18,04 \mathrm{~A} \tag{3}
\end{align*}
$$

8.3.3 $\quad I_{P h(s)}=I_{L(s)} \quad \checkmark$

$$
=18,04 \mathrm{~A}
$$

QUESTION 9: LOGIC CONCEPTS AND PLC'S

9.1 Synchronous counters \checkmark

Asynchronous counters \checkmark
(Also known as clocked and unclocked counters)
(2)
9.2 Monostable \checkmark

Astable \checkmark
Bistable \checkmark
9.3 $\begin{aligned} & \text { Positive logic } \checkmark \\ & \text { Negative logic } \checkmark\end{aligned}$
9.4 Fewer components such as contactors are subject to wear because less of these items are used \checkmark. Additionally units have built-in diagnostic functions.
9.5

It was decided that if learners put a feedback connection to the OR gate should not be penalised.
Alternatively accept the Direct-on-line starter

9.6
9.6.1

$$
\begin{equation*}
F=A \cdot \bar{B} \cdot C r+\bar{A} \cdot B \cdot C r+A \cdot B \cdot \bar{C} r+A \cdot B \cdot C \checkmark \tag{4}
\end{equation*}
$$

9.6.2

$$
F=A \cdot B+B \cdot C+A \cdot C \quad \checkmark
$$

It was decided that if the learner used SOP to simplify the equation he/she should get full 5 marks.

9.6.3

9.7

9.8

All changes to output Q must be in line with the enabling clock pulse no matter when input changes. Note the order of change. First either J or K is set or reset, then the clock pulse enables the output to change accordingly.

QUESTION 10: THREE-PHASE MOTORS AND CONTROL

10.1

10.1.1 Earth Resistance Test \checkmark
Field Coil Continuity / Resistance Test \checkmark (Any acceptable electrical test)

10.1.2 Check bearings for smooth operation \checkmark Check housing for cracks \checkmark
 (Any acceptable mechanical check)

10.2
10.2.1 Field Coil Windings \checkmark
10.2.2 Bearing and / or Bearing Housing \checkmark
(Answer has to contain reference to the bearing)
10.2.3 Rotor / Squirrel-Cage Rotor or similar answer \checkmark
10.2.4 Stator / Housing \checkmark
10.3 A three-phase alternating voltage supply is connected across the stator windings in either star or delta.
Due to the phase difference of the current in the stator windings a rotating magnetic field is set up in and around the stator windings.
The rotating magnetic field in the stator sweeps over the rotor conductors (which is in the form of a squirrel cage in the rotor) thus inducing an EMF in the rotor \checkmark and a resulting circulating current flowing in the squirrel cage. Faraday's law.
The magnetic field induced in the rotor is repelled \checkmark by the rotating magnetic field induced by the stator \checkmark as the nature of the induced current is such that the magnetic field around it opposes the magnetic field induced by the flow of current in the field coils. Lenz's law.
The two magnetic fields interact, causing a force to be exerted between them. This results in a torque on the rotor shaft which causes the rotor to turn \checkmark
10.4 Given:

Motor Δ
$V_{L}=V_{P h}$
$I_{L}=I_{P h}$
$P_{o}=4 \mathrm{~kW}$
$V_{L}=380 \mathrm{~V}$
Pf $=0,8$
10.4.1 $\quad P_{o}=\sqrt{3} V_{L} I_{L} \cos \theta$

$$
\begin{align*}
I_{L} & =\frac{P_{o}}{\sqrt{3} V_{L} \cos \theta} \\
& =\frac{4000}{\sqrt{3} \times 380 \times 0,8} \\
& =7,6 \mathrm{~A} \tag{4}
\end{align*}
$$

10.4.2

$$
\begin{align*}
I_{P h} & =\frac{I_{L}}{\sqrt{3}} \\
& =\frac{7,6}{\sqrt{3}} \\
& =4,39 \mathrm{~A} \tag{3}
\end{align*}
$$

10.4.3

$$
\begin{align*}
Q & =\sqrt{3} V_{L} I_{L} \sin \theta \quad \checkmark \\
\text { but_ } \theta & =\cos ^{-1} 0,8 \\
& =36,86^{\circ} \\
\text { thus } & \therefore Q=\sqrt{3} \times 380 \times 7,6 \times \sin 36,86 \\
& =3 K \text { var } \tag{4}
\end{align*}
$$

10.5 1 - Overload contacts \checkmark

2 - Normally closed stop \checkmark
3 - Normally open start \checkmark
4 - Normally open hold-in \checkmark
It was decided if the learner wrote "Overload" on no 4, they should also get a mark (was not clear on the sketch what 4 was referring to)

FORMULA SHEET

RLC

$$
\begin{gathered}
X_{L}=2 \pi F L \\
X_{C}=\frac{1}{2 \pi F C} \\
Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}} \\
I_{T}=\sqrt{I_{R}^{2}+\left(I_{C}-I_{L}\right)^{2}} \\
V_{T}=\sqrt{V_{R}^{2}+\left(V_{C}-V_{L}\right)^{2}} \\
f_{r}=\frac{1}{2 \pi \sqrt{L C}} \\
Q=\frac{1}{R} \sqrt{\frac{L}{C}} \\
Q=\frac{X_{L}}{R}=\frac{V_{L}}{V_{R}} \\
\operatorname{Cos} \theta=\frac{I_{R}}{I_{T}} \\
\operatorname{Cos} \theta=\frac{R}{Z}
\end{gathered}
$$

Alternating Current, Transformers and Motors

Single $\boldsymbol{\Phi}$

$P=V I \cos \theta$
$S=V I$
$Q=V I \sin \theta$

Three $\boldsymbol{\Phi}$

$$
\begin{gathered}
P=\sqrt{3} V_{L} I_{L} \cos \theta \\
S=\sqrt{3} V_{L} I_{L} \\
Q=\sqrt{3} V_{L} I_{L} \sin \theta \\
I_{L}=\sqrt{3} I_{P H} \text { for } \Delta \\
V_{L}=V_{P h} \text { for } \Delta
\end{gathered}
$$

$$
V_{L}=\sqrt{3} V_{P h} \text { for } Y
$$

$$
I_{L}=I_{P h} \text { for } \mathrm{Y}
$$

Amplifiers

$$
\begin{gathered}
A v=\frac{R_{f}}{R_{i n}}+1 \\
\beta=\frac{I_{c}}{I_{b}} \\
I_{b}=I_{e}-I_{c} \\
P_{G}=10 \log \frac{P_{0}}{P_{i}}
\end{gathered}
$$

