

NATIONAL SENIOR CERTIFICATE

GRADE 12

LIFE SCIENCES P1

NOVEMBER 2009

MEMORANDUM

MARKS: 150

This memorandum consists of 10 pages.

SECTION A

QUESTION 1

1.1	1.1.1 1.1.2 1.1.3 1.1.4 1.1.5	D√√ B√√ C√√ C√√ A√√ (5 x 2)	(10)
1.2	1.2.1 1.2.2 1.2.3 1.2.4 1.2.5 1.2.6	Fallopian tube√/oviduct Graafian follicle√ Umbilical vein√ Oxytocin√ Seed√ Cervix√	(6)
1.3	1.3.1 1.3.2 1.3.3 1.3.4 1.3.5 1.3.6	E√ G√ F√ I√ A√ D√	(6)
1.4	1.4.1	Transcription√	(1)
	1.4.2	5√	(1)
	1.4.3	GCU√ – CAU√ – UGG√	(3)
	1.4.4	(a) The sequence of the amino acids will change √/the actual amino acids could change and a new/different protein could form√	(2)
		(b) Mutation√	(1) (8)

TOTAL SECTION A: 50

The same number of days for pollination√/prevention of pollination/

(3)

(7)

any

Copyright reserved Please turn over

the investigation√

Use the same number of flowers√

for fertilisation to take place

(Mark first THREE only)

SECTION B

QUESTION 2

2.1	2.1.1	 A - prostate gland√ B - vas deferens / sperm duct√ E - urethra√ G - nucleus√ 	(4)
	2.1.2	C - Stores sperms temporarily√/sperms mature here (Mark first ONE only)	
		F - Contain enzymes to break down the cell membrane of the egg cell ✓	
		(Mark first ONE only)	(2)
	2.1.3	D√ testis √/seminiferous tubules	(2)
	2.1.4	To keep the testes at a temperature that is (about 3 °C) lower than body temperature√	
		A lower temperature is necessary for the production of healthy sperm√/so that healthy sperms can survive	(2)
	2.1.5	(a) Interstitial cells √/Cells of Leydig(b) Testosterone √	(1) (1)
	2.1.6	 (a) Severing of the vas deferens√ Will not allow sperms to pass to urethra and into the female√ and hence no fertilisation results√ 	(2)
		(b) Yes√	(1)
		(c) HI virus is carried in body fluids√/ seminal fluids/saliva/blood Can infect a person through open wounds√/blood transfusion/ sexual intercourse	
		Therefore vasectomy does not stop the transmission of HIV	(2) (17)
2.2	2.2.1	Accept day 14 or day 15√	(1)
	2.2.2	Days 0 - 7√	(1)
	2.2.3	 Causes the follicle to burst open√/stimulates ovulation Stimulates the formation of the corpus luteum√ (Mark first ONE only) 	(1)
	2.2.4	 LH levels remain low up to day 12/13 √ Then it increases sharply up to day 14√ After which it decreases and remains low√ 	(3)

DoE/November 2009

Life Sciences/P1

QUESTION 3

3.1

3.1.1

(a)
$$I^{A}I^{B} \checkmark \checkmark$$
 (2)
(b) $I^{A}i\checkmark \checkmark / I^{A}I^{\circ} I^{B}i \checkmark \checkmark / I^{B}I^{\circ}$ $ii\checkmark \checkmark / I^{\circ}I^{\circ}$ $AB\checkmark \checkmark$ $AO\checkmark \checkmark BO\checkmark \checkmark OO\checkmark \checkmark$ (6)

3.1.2 It is a sex-linked√disease

caused by a recessive allele√

carried on the X√ chromosome

Males need only one recessive allele √to have the disease because they have XY combination,

while females have to have both recessive alleles√ to have haemophilia because they have an XX combination any (4)

(12)

3.2

3.2.1 Normal female: Chromosome pair 23 = XX ✓ Female with Turner's syndrome: Only one X√ chromosome

(2)

3.2.2 She will not be able to have children√ since her sex organs will not develop√/no menstrual cycle because there are underdeveloped gonads and therefore no hormones

(2)

(Mark first ONE only)

(4)

3.3

3.3.1
$$\frac{102}{120} \checkmark \times \frac{100}{1} \%$$

= 85 $\checkmark\%$ (2)

3.3.2 Equal number of boys and girls√

Take a much larger sample√/repeat samples in another school/ another population

(2)

(Mark first TWO only)

(4)

3.4

 P_1 phenotype Black x Brown√ Bb x bb√ genotype

Meiosis

G

B, b x b √

gametes b В Bb b bb

OR

Fertilisation

 F_1 genotype Bb and bb√ phenotype Black and brown√ 1 mark for correct gametes 1 mark for correct genotypes

1 mark for stating P₁ and F₁

1 mark for stating meiosis and fertilisation

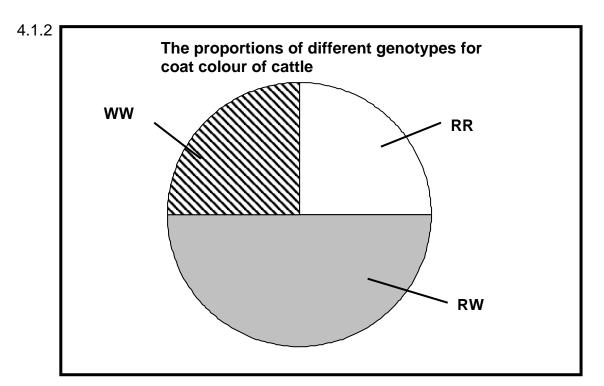
(6)any

- 3.5 Although contraceptives are easily available nowadays, many teenagers are not well informed about them√
 - Some people feel that morality has decreased significantly√
 - Families, nowadays, are less likely to provide teenagers with care and discipline√
 - Teenagers are more exposed to sex in the media in these days√
 - Teenagers are increasingly able to make their own decisions√
 - Abortions are now legal and easily available√

(Mark first FOUR only) any

TOTAL SECTION B: 60

30


NSC - Memorandum

SECTION C

QUESTION 4

4.1

4.1.1 $1:2:1\checkmark$ (2)

Rubric for the mark allocation of the pie chart

Correct type of graph	1
Caption	1
Correct proportions of slices	1: 1 correct slice
	2: 2 to 3 correct slices
Label / key for each slice	1 mark for each label

NOTE: If the wrong type of graph is drawn: marks will be lost for "correct type of graph" as well as for drawing the slices in correct proportions. (7)

4.1.3 Both alleles ✓ for fur colour are equally dominant ✓ and therefore both are expressed in the phenotype ✓

OR

Neither of the alleles / for red or white colour are dominant over each other / and therefore no one colour alone is expressed/masked in the phenotype /

(3)

(12)

4.2 - Determine the sample size√/ number of boys and girls per grade 4.2.1 - Design a table to record the results√ - Organise the ink pad and paper to take the fingerprint type of each learner√/organise a way to obtain fingerprints Time and place to be arranged√ (Mark first FOUR only) (4) 4.2.2 (a) Number of learners ✓ with different fingerprint types ✓ (2) (b) No√ (1) (c) Results indicate ✓ that most learners ✓ have the plain loop type√ of fingerprinting anv 2 OR Results indicate ✓ that learners with a plain arch ✓ do not make up the largest number√ OR Results ✓ are not in line with the conclusion ✓ (2) 4.2.3 (a) Advantages Criminals can be identified //biological evidence Deceased bodies can be identified√ (2) (Mark first TWO only) (b) Disadvantages

People can be framed√ Infringing on the rights of people√/invasion of privacy It is costlv√ (Mark first TWO only)

(2)

(13)

4.3 Advantages of using GMO's as a source of food

- Control pests with specific genes inserted into the crop√ which is less harmful to the environment than pesticides \(\setminus / \) Reduce the need for the use of chemicals
- Selecting the best genes to produce better resistant crops√/stronger offspring to withstand harsh environmental conditions√
- Using specific genes to increase crop yields√/life stock improvement for food security√
- Selecting genes to increase shelf life of plant products√ so that there is minimal waste√
- Selecting genes that delay ripening of fruits ✓ to meet the demand ✓ locally and internationally
- Using specific genes to improve nutritional value√of food for better health√
- Using specific genes to introduce new traits in crops√ to suit specific needs ✓ of a population (e.g. to increase vitamin A in food) any (6 x 2) (12)

NSC - Memorandum

ASSESSING THE PRESENTATION OF THE ESSAY

Marks	Descriptions
3	Well structured – demonstrates insight and understanding of question
2	Minor gaps in the answer
1	Attempted but with significant gaps in the answer
0	Not attempted/nothing written other than question number

(3) **(15)** [40]

TOTAL SECTION C: 40

> **GRAND TOTAL:** 150